1,957 research outputs found

    Inactivation and Secondary Structure in the D4/S4-5 Region of the SkM1 Sodium Channel

    Get PDF
    The D4/S4-5 interhelical region plays a role in sodium channel fast inactivation. Examination of S4-5 primary structure in all domains suggests a possible amphipathic helical conformation in which a conserved group of small hydrophobic residues occupies one contiguous surface with a more variable complement of nonpolar and polar residues on the opposite face. We evaluated this potential structure by replacing each residue in D4/S4-5 of the rat SkM1 skeletal muscle sodium channel with substitutions having different side chain properties. Of the 63 mutations analyzed, 44 produced functional channels. P1473 was intolerant of substitutions. Nonpolar substitutions in the conserved hydrophobic region were functionally similar to wild type, while charged mutations in this region before P1473 were nonfunctional. Charged mutations at F1466, M1469, M1470, and A1474, located on the opposite surface of the predicted helix, produced functional channels with pronounced slowing of inactivation, shifted voltage dependence of steady-state inactivation, and increased rate of recovery from inactivation. The substituted-cysteine-accessibility method was used to probe accessibility at each position. Residues L1465, F1466, A1467, M1469, M1470, L1472, A1474, and F1476C were easily accessible for modification by sulfhydryl reagents; L1464, L1468, S1471, and L1475 were not accessible within the time frame of our measurements. Molecular dynamics simulations of residues A1458 to N1477 were then used to explore energetically favorable local structures. Based on mutagenesis, substituted-cysteine-accessibility method, and modeling results, we suggest a secondary structure for the D4/S4-5 region in which the peptide chain is α-helical proximal to P1473, bends at this residue, and may continue beyond this point as a random coil. In this configuration, the entire resultant loop is amphipathic; four residues on one surface could form part of the binding site for the inactivation particle

    Rapid evolution of hybrid breakdown following recent divergence with gene flow in Senecio species on Mount Etna, Sicily

    Get PDF
    How do nascent species evolve reproductive isolation during speciation with on-going gene flow? How do hybrid lineages become stabilised hybrid species? While commonly used genomic approaches provide an indirect way to identify species incompatibility factors, synthetic hybrids generated from interspecific crosses allow direct pinpointing of phenotypic traits involved in incompatibilities and the traits that are potentially adaptive in hybrid species. Here we report the analysis of phenotypic variation and hybrid breakdown in crosses between closely-related Senecio aethnensis and S. chrysanthemifolius, and their homoploid hybrid species, S. squalidus. The two former species represent a likely case of recent (<200 ky) speciation with gene flow driven by adaptation to contrasting conditions of high- and low-elevations on Mount Etna, Sicily. As these species form viable and fertile hybrids, it remains unclear whether they have started to evolve reproductive incompatibility. Our analysis represents the first study of phenotypic variation and hybrid breakdown involving multiple Senecio hybrid families. It revealed wide range of variation in multiple traits, including the traits previously unrecorded in synthetic hybrids. Leaf shape, highly distinct between S. aethnensis and S. chrysanthemifolius, was extremely variable in F2 hybrids, but more consistent in S. squalidus. Our study demonstrates that interspecific incompatibilities can evolve rapidly despite on-going gene flow between the species. Further work is necessary to understand the genetic bases of these incompatibilities and their role in speciation with gene flow.info:eu-repo/semantics/publishedVersio

    Electronic structure and magnetic properties of the spin-1/2 Heisenberg system CuSe2O5

    Get PDF
    A microscopic magnetic model for the spin-1/2 Heisenberg chain compound CuSe2O5 is developed based on the results of a joint experimental and theoretical study. Magnetic susceptibility and specific heat data give evidence for quasi-1D magnetism with leading antiferromagnetic (AFM) couplings and an AFM ordering temperature of 17 K. For microscopic insight, full-potential DFT calculations within the local density approximation (LDA) were performed. Using the resulting band structure, a consistent set of transfer integrals for an effective one-band tight-binding model was obtained. Electronic correlations were treated on a mean-field level starting from LDA (LSDA+U method) and on a model level (Hubbard model). In excellent agreement of experiment and theory, we find that only two couplings in CuSe2O5 are relevant: the nearest-neighbour intra-chain interaction of 165 K and a non-frustrated inter-chain coupling of 20 K. From a comparison with structurally related systems (Sr2Cu(PO4)2, Bi2CuO4), general implications for a magnetic ordering in presence of inter-chain frustration are made.Comment: 20 pages, 8 figures, 3 table

    The crystal structure of fedotovite, K2Cu30(SO4) 3

    Get PDF
    Abstract The crystal structure of fcdotovite, K1CU30(S04h has been determined, space group C2/e, a 19.037(6), h 9.479(2), e 14.231(5) A,~1 11.04(3t, Z = 8, Dx = 3.09 g/cm3. The main units of the fedotovite structure are formed around two additional oxygen atoms and consist of edge-sharing [OCU4J tetrahedra and four [S04J tetrahedra attached to them. The units are further connected by two [S04J tetrahedra, building distinct layers parallel to the yz plane. These layers are interconnected by potassium atoms. In the fedotovite structure, the three kinds of copper atoms are fivefold (4 + 1) coordinated to oxygen atoms with a strong Jahn-Teller effect. The coordination polyhedra of Cui and Cu2 atoms are distorted and flattened orthorhombic pyramids with Cu-O distances varying from 1.912 to 2.333 A,. the sixth neighbour of the both atoms is the copper atom lying at 2.975 and 2.981 Afor Cu2 and Cui respectively. The coordination environment of the Cu3 atom is a distorted elongated orthorhombic pyramid with four Cu-O distances from 1.943 to 1.961 A, a fifth at 2.558 A, and further sixth and seventh neighbours (oxygen and copper atoms) at 2.809 and 2.806 A, respectively

    Particle Creation from Vacuum by Lorentz Violation

    Full text link
    It is shown that the vacuum state in presence of Lorentz violation can be followed by a particle-full universe that represents the current status of the universe. In this model the modification in dispersion relation (Lorentz violation) is picked up representing the regime of quantum gravity. The result can be interpreted such that the existence of the particles is an evidence for quantum effects of gravity in the past. It is concluded that only the vacuum state is sufficient to appear the matter fields spontaneously after the process of semi-classical analysis.Comment: 9 pages, 2 figure

    Технологические барьеры при высокоинтенсивных воздействиях в процессах послойного синтеза и обработки материалов

    Get PDF
    The technological methods of laminate synthesis with operated inheritance of characteristics of material, using the technological barriers in the processes of high-intensive treatment, are determined on basis of dominants characteristics of functional layers.На базе передачи доминирующих свойств функциональных слоев рассмотрены технологические методы послойного синтеза с управляемым наследованием свойств материала, использующие технологические барьеры в процессах высокоинтенсивной обработки

    Dielectric and magnetic responses in nanocrystalline BaTiO3

    Full text link
    This work was supported by Russian Foundation for Basic Research (Research Project No.18-52-00039 Bel_a)
    corecore